

Hostaform® C 9021 10/9005

Celanese Corporation - Acetal (POM) Copolymer

Saturday, November 2, 2019

General Information

Product Description

Hostaform® C 9021 10/9005 is a nominal 9 melt flow rate acetal copolymer which is capable of being permanently marked by a laser. Parts molded from Hostaform® C 9021 10/9005 can be laser marked with barcodes, identification numbers, designs, 2-D symbology, etc.

General

Material Status	 Commercial: Active

· Africa & Middle East Availability

Asia Pacific

• Latin America

• Europe

· North America

Features RoHS Compliance · Laser Markable

· Contact Manufacturer

ASTM & ISO Properties 1			
Physical	Nominal Value	Unit	Test Method
Density	1.41	g/cm³	ISO 1183
Melt Volume-Flow Rate (MVR) (190°C/2.16 kg)	8.00	cm³/10min	ISO 1133
Molding Shrinkage			ISO 294-4
Across Flow	1.8	%	
Flow	2.0	%	
Water Absorption (Saturation, 73°F)	0.65	%	ISO 62
Water Absorption (Equilibrium, 73°F, 50% RH)	0.20	%	ISO 62
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus	413000	psi	ISO 527-2/1A
Tensile Stress (Yield)	9280	psi	ISO 527-2/1A/50
Tensile Strain (Yield)	9.0	%	ISO 527-2/1A/50
Nominal Tensile Strain at Break	25	%	ISO 527-2/1A/50
Tensile Creep Modulus (1 hr)	363000	psi	ISO 899-1
Tensile Creep Modulus (1000 hr)	189000	psi	ISO 899-1
Flexural Modulus (73°F)	392000	psi	ISO 178
Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength			ISO 179/1eA
-22°F	2.4	ft·lb/in²	
73°F	2.6	ft·lb/in²	
Charpy Unnotched Impact Strength			ISO 179/1eU
-22°F	76	ft·lb/in²	
73°F, Partial Break	86	ft·lb/in²	
Thermal	Nominal Value	Unit	Test Method
Heat Deflection Temperature (264 psi, Unannealed)	219	°F	ISO 75-2/A
Vicat Softening Temperature	302	°F	ISO 306/B50
Melting Temperature ²	331	°F	ISO 11357-3

Thermal	Nominal Value Unit	Test Method	
Heat Deflection Temperature (264 psi, Unannealed)	219 °F	ISO 75-2/A	
Vicat Softening Temperature	302 °F	ISO 306/B50	
Melting Temperature ²	331 °F	ISO 11357-3	
CLTE - Flow	6.1E-5 in/in/°F	ISO 11359-2	
CLTE - Transverse	6.1E-5 in/in/°F	ISO 11359-2	
Effective Thermal Diffusivity	4.85E-8 m²/s	Internal Method	

Hostaform® C 9021 10/9005

Celanese Corporation - Acetal (POM) Copolymer

Electrical	Nominal Value	Unit	Test Method
Surface Resistivity	1.0E+14	ohms	IEC 60093
Volume Resistivity	1.0E+14	ohms·cm	IEC 60093
Electric Strength	890	V/mil	IEC 60243-1
Relative Permittivity			IEC 60250
100 Hz	4.00		
1 MHz	4.00		
Dissipation Factor			IEC 60250
100 Hz	2.0E-3		
1 MHz	5.0E-3		
Comparative Tracking Index	600	V	IEC 60112
Flammability	Nominal Value	Unit	Test Method
Flame Rating			UL 94
0.06 in	НВ		
0.12 in	НВ		
Fill Analysis	Nominal Value	Unit	Test Method
Melt Density	1.20	g/cm³	Internal Method
Melt Thermal Conductivity	1.1	Btu·in/hr/ft²/°F	Internal Method
Ejection Temperature	284	°F	
Specific Heat Capacity of Melt	0.528	Btu/lb/°F	

Injection	Nominal Value	Unit
Drying Temperature	212 to 248	°F
Drying Time	3.0 to 4.0	hr
Suggested Max Moisture	0.15	%
Hopper Temperature	68 to 86	°F
Rear Temperature	338 to 356	°F
Middle Temperature	356 to 374	°F
Front Temperature	374 to 392	°F
Nozzle Temperature	374 to 410	°F
Processing (Melt) Temp	374 to 410	°F
Mold Temperature	176 to 248	°F
Injection Rate	Slow-Moderate	
Back Pressure	< 580	psi

Feeding zone temperature: 60 to 80°C Zone4 temperature: 190 to 210°C Hot runner temperature: 190 to 210°C

Notes

¹ Typical properties: these are not to be construed as specifications.

² 10°C/min

